


In 2 + 1 dimensions, it is well known that when a compact gauge group G is sponta-

neously broken via the Higgs mechanism to a finite subgroup H, there are topologically

stable vortices labeled by h ∈ H [1]. When H is nonabelian, there is a long range interac-

tion between these vortices due to a classical analog of the (nonabelian) Aharonov–Bohm

effect [2][3]. As a result, the classical and quantum mechanics of such multi-vortex sys-

tems is richer and more complex than that of their abelian counterparts. For example, the

concept of indistinguishability of vortices is quite subtle and leads one to suspect that the

statistical properties of these vortices may be extremely unusual. In this paper we con-

sider a model where, in fact, the usual superselection rule between bosonic and fermionic

statistics is violated. That is, a quantum state symmetric under the interchange of a pair

of indistinguishable vortices can “mix” with an antisymmetric state. (The existence of

such behavior requires the presence of one or more “spectator” vortices with appropriate

H-flux elements.) While recently it has been recognized that it is possible to introduce

such ambistatistical behavior into certain identical particle systems [4], in this theory it

arises as a natural consequence of the long range vortex interactions. The above model also

possesses states containing two indistinguishable spinless vortices obeying Fermi statistics,

thus violating the usual spin-statistics relation. For systems of three or more indistinguish-

able vortices, parastatistical states [4][5] also can occur, and in the presence of a spectator

vortex different parastatistical types need not be superselected. We proceed to construct

a second model which displays the fractional statistical analogue of each of the above be-

haviors. In this theory, there are also violations of the superselection rule between states

with different values of e2πiJ , where J is the total angular momentum. Our work may be

considered as an application and extension of the ideas in [3], where a general framework

is developed for studying vortex statistics.

We now recall some basic facts concerning the physics of nonabelian vortices.1 When

internal excitations are ignored, a single vortex configuration is determined completely by

the vortex position x1 ∈ IR2 and its H-flux element h. This flux element may be thought

of as the path-ordered exponential (or holonomy) of the corresponding gauge field around

a closed contour, based at a fixed point x0 at spatial infinity, which encircles the vortex

once in a counterclockwise manner. For two vortices at x1 and x2, there are two fluxes

h1 and h2 determined by path-ordered exponentials evaluated along contours C1 and C2.

1 In what follows, we work in temporal gauge (A0 = 0). Furthermore, we treat the vortices as

pointlike objects and never allow the positions of any pair of them to coincide.
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We take Ci to encircle the vortex at xi as shown in figure 1. If the two vortices are

moved along closed paths in IR2, then when they return to their original positions their

flux elements in general will have changed [2][3]. In particular, if the vortex originally at

x1 encircles the one at x2 once counterclockwise, then both fluxes are conjugated by the

product h1h2. That is, in the final configuration the vortex at xi has flux (h1h2)hi(h1h2)−1.

One way to see this is by transforming to a singular gauge in which the gauge potential

is zero everywhere except on two strings beginning at x1 and x2 and stretching out to

spatial infinity in different directions. As the h1 vortex is brought around the h2 vortex we

deform the two strings so that they never intersect.2 In the final configuration these strings

will have become entangled, and the above result may be obtained by recalculating the

holonomies along C1 and C2. Note that these flux changes have a completely topological

origin; at no point during the evolution has any vortex traversed a region of nonzero field.

Similarly, if we exchange counterclockwise the positions of the two vortices with initial

fluxes h1 and h2, then we end up with an h1h2h
−1
1 vortex at x1 and an h1 vortex at x2.

The above statements generalize in a natural way to a system of N vortices. The total flux

of an N-vortex system, defined as the path-ordered exponential along a counterclockwise

contour which encircles all of the vortices, is conserved during the evolution of the system

although the fluxes of individual vortices will in general become conjugated. If the vortices

are located at the positions xi, 1 ≤ i ≤ N , with fluxes hi (defined as in figure 1), then this

total flux is h1h2 · · ·hN .

There is a subtle point concerning the distinguishability of vortices. Although two

single-vortex fields with conjugate flux elements are distinct configurations in the broken

gauge theory, they cannot be distinguished by any physical measurement. The standard

procedure for probing the flux element of a vortex is by an Aharonov-Bohm scattering

process involving particles carrying nontrivial H-charge. More precisely, suppose we take

such a particle once around a vortex of flux h. If we assume that the particle is initially

in a state |u〉 which transforms according to a faithful representation D of H, then upon

its return it will be in the state D(h)|u〉. We may then measure the matrix elements

〈v|D(h)|u〉 by interfering this particle with a variety of other particles in states |v〉 also

transforming under D. In principle, it seems as though we may in this way determine

all matrix elements of D(h), and hence h itself. However it has been shown that only

2 Note that in order for this path to be of finite action, the endpoints at spatial infinity of the

two strings must remain fixed.
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the character χ(D)(h) =
∑
v〈v|D(h)|v〉 can actually be obtained in this fashion, if one

takes into account the effects of the creation and annihilation of virtual vortex-antivortex

pairs [6]. Since χ(D)(h1) = χ(D)(h2) if h1 and h2 are conjugate, we see that vortices

with conjugate flux elements are indistinguishable. We note that this result holds even at

energies well below the threshold for the creation of a real vortex-antivortex pair.

From the above discussion it is clear that vortices possessing conjugate flux elements

should be considered as different internal states of a single species α. One consequence of

this for the quantum mechanics of such objects is that an isolated pair of vortices of type

α need not be bosons. Indeed, they can be anyons. We will also see that in the presence

of a third (distinguishable) vortex whose flux does not commute with a representative

flux from the α species, the statistical behavior can be even more bizarre. In general, a

quantum mechanical N-vortex state containing ni vortices of type αi, 1 ≤ i ≤ k, is a

linear combination of states in which the vortices have well-defined fluxes. (We assume

that the vortices are localized about the positions x1, . . . xN as in figure 1, the first n1 of

these positions being associated with species α1, the next n2 with species α2, etc.) These

states may be obtained from each other by moving the vortices around closed loops in the

plane and/or permuting the positions of vortices of the same species. We will denote by

|h1, . . . , hn1 ;hn1+1, . . . , hn1+n2; . . . hN〉 the term in this sum in which the vortex localized

about xi has flux hi. Note that if we let Ni =
∑i

j=1 nj, then the fluxes hNi+1 through

hNi+1, for any fixed 0 ≤ i ≤ k (where N0 ≡ 0), must all lie in the same conjugacy class.

The loop and permutation operations in the above N-vortex system form a group

known as the “partially colored braid group” Bn1,...,nk [7]. It can be interpreted as the

fundamental group of the configuration space of our effective N-vortex system. The Hilbert

space spanned by all possible states |h1, . . . , hn1;hn1+1, . . . , hn1+n2; . . . hN 〉 decomposes

into a direct sum of subspaces, each of which transforms according to an irreducible unitary

representation (IUR) of Bn1,...,nk. In each of these sectors, the statistics of the vortices

of type αi is determined by the action of the αi exchange operations on the states. The

group B1,1, which is relevant for a system consisting of two distinguishable vortices, is

isomorphic to the integers ZZ, whose generator ` is taken to be the operation of circling the

vortex at x1 counterclockwise around the one at x2. The action of ` on the corresponding

two-vortex states is given by `|h1;h2〉 = |gh1g−1; gh2g−1〉, where g = h1h2. The group

B2 which arises in a system of two indistinguishable vortices is again isomorphic to ZZ,

but this time the generator σ is the operation which exchanges the two vortices in a

counterclockwise manner. It acts as σ|h1, h2〉 = |h1h2h
−1
1 , h1〉. As a final example, the
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group B1,2 is an infinite discrete group which can be generated by two elements σ and

`, representatives of which are shown in figure 2, subject to the single defining relation

(σ`)2 = (`σ)2. The action of these generators on the three-vortex states is given by

`|h1;h2, h3〉 = |gh1g−1; gh2g−1, h3〉 and σ|h1;h2, h3〉 = |h1;h2h3h
−1
2 , h2〉, where g = h1h2.

Since this group is nonabelian it has IUR’s of dimension greater than one, which will lead

to exotic statistical behavior in the associated Hilbert space sectors.

We will now illustrate these features of multi-vortex systems with two simple examples.

In the first model the group G = SU(2) is broken down to the eight element quaternion

group H = Q8 [8]. The elements of Q8 ⊂ SU(2) are ±1 and the Pauli matrices aj = ±iτj,

j = 1, 2, 3. There are five conjugacy classes, given by {1}, {−1} and {±aj}. We start

with the state |a3,−a3〉 containing two vortices of a single species β. The total flux of

the system is trivial. A basis for a representation of the braid group B2 can be obtained

from the states σm|a3,−a3〉 for integer m. Even powers of σ operate trivially on this

state, while odd powers yield |−a3, a3〉.3 This two-dimensional representation of B2 can

be decomposed into a direct sum of two one-dimensional representations by forming the

symmetric and antisymmetric combinations of the above states. In the corresponding

Hilbert space sectors, the β vortices are bosons and fermions respectively. The appearance

of Fermi statistics is somewhat surprising since all of the fundamental fields in our theory

are bosonic. (We will return to this point later.) If we start with a state of three or more

β vortices, not all of the same flux, then a similar procedure will also yield parastatistical

Hilbert space sectors.

Next, consider the three-vortex state |a1; a3, a3〉 in which a single type α vortex (at

x1) has flux a1, and two type β vortices (at x2 and x3) have flux a3. The total flux of the

system is −a1. We obtain a basis for a representation of the group B1,2 by operating on

this state with all combinations of the generators σ and ` (and their inverses). This basis

3 By allowing the action of σ on |a3,−a3〉 to include a phase, it might seem that |a3,−a3〉 and

σ2|a3,−a3〉 need only be equal up to a phase. However, here σ2 (unlike σ) can be thought of as

a loop in the full gauge theory configuration space. The phase difference between the above two

states is then just a “Berry’s phase” with respect to this loop. But the gauge theory configuration

space does not possess the appropriate topology for the existence of such nontrivial phases. Thus

the above phase is 1. Similar comments hold for the other examples in this paper.
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is
|a1; a3, a3〉,

|−a1;−a3, a3〉 = `|a1; a3, a3〉,

|−a1; a3,−a3〉 = σ`|a1; a3, a3〉,

|a1;−a3,−a3〉 = `σ`|a1; a3, a3〉.

(1)

Operating further with σ or ` simply permutes these four states. This four-dimensional

representation of B1,2 reduces to a direct sum of two one-dimensional IUR’s and one two-

dimensional IUR. This can be seen in the transformed basis

|ψ〉 =
1
2
(
|a1; a3, a3〉+ |a1;−a3,−a3〉+ |−a1;−a3, a3〉+ |−a1; a3,−a3〉

)
,

|ξ〉 =
1
2
(
|a1; a3, a3〉+ |a1;−a3,−a3〉 − |−a1;−a3, a3〉 − |−a1; a3,−a3〉

)
,

|φ1〉 =
1√
2

(
|a1; a3, a3〉 − |a1;−a3,−a3〉

)
,

|φ2〉 =
1√
2

(
|−a1;−a3, a3〉 − |−a1; a3,−a3〉

)
.

(2)

The vectors |ψ〉 and |ξ〉 carry one-dimensional IUR’s ρ1 and ρ2 respectively, while |φ1〉
and |φ2〉 form a basis for a two-dimensional IUR ρ3. The generators σ and ` in these

representations are

ρ1(σ) = 1,

ρ2(σ) = 1,

ρ3(σ) =
(

1 0
0 −1

)
,

ρ1(`) = 1,

ρ2(`) = −1,

ρ3(`) =
(

0 1
1 0

)
.

(3)

In the sectors corresponding to |ψ〉 and |ξ〉, the vortices of type β are bosons, since ρ1(σ) =

ρ2(σ) = 1. In the ρ3 sector they obey ambistatistics, which is neither Bose nor Fermi but

contains aspects of each [4].

It is interesting to see what happens to the states |h1;h2, h3〉 when we remove one

of the vortices from the system. First, we note that the resulting two-vortex state will

depend on the manner in which the third vortex is removed. That is, there is a variety

of ways in which this vortex may be threaded through the others as it is dragged off to

spatial infinity, and the total flux of the remaining two-vortex system will depend on the

choice of this path [3]. If we choose to drag the vortex at x3 in figure 2 off to the right,
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then |h1;h2, h3〉 will be reduced to the two-vortex state |h1;h2〉. Applying this procedure

to the states in (2), we find

|ψ〉 → 1√
2

(
|ψ+〉+ |ψ−〉

)
=

1
2
(
|a1; a3〉+ |−a1;−a3〉

)
+

1
2
(
|a1;−a3〉+ |−a1; a3〉

)
,

|ξ〉 → 1√
2

(
|ξ+〉+ |ξ−〉

)
=

1
2
(
|a1; a3〉 − |−a1;−a3〉

)
+

1
2
(
|a1;−a3〉 − |−a1; a3〉

)
,

|φ1〉 →
1
2
(
|ψ+〉 − |ψ−〉+ |ξ+〉 − |ξ−〉

)
,

|φ2〉 →
1
2
(
|ψ+〉 − |ψ−〉 − |ξ+〉+ |ξ−〉

)
.

(4)

Note that the two-vortex states |ψ±〉 and |ξ±〉 have total flux ±a3a1. Each of these four

states defines a one-dimensional IUR of the two-vortex braid group B1,1 = ZZ generated

by the single loop ` in figure 2; ` operates trivially on |ψ±〉 and multiplies |ξ±〉 by −1.

Thus the total Hilbert space breaks up into a direct sum of four pieces, each of which

corresponds to one of these representations and has a fixed total flux. In fact, all two-

vortex states with a type α vortex at x1 and a type β vortex at x2 appear here. Similarly,

we can reduce the three-vortex states in (2) by removing the α vortex at x1 off to the left,

in which case we again obtain a basis for all two-vortex states (both being of type β now).

Note that |ψ〉, |ξ〉 and |φ1〉 yield bosonic two-vortex states, while |φ2〉 gives a fermionic

state. In turn, it is straightforward to verify that all three-vortex states (including the

ambistatistical ones in (2)) may be obtained by removing vortices from a larger system.

In such a system, other superselection rules may be violated, such as that between Bose

statistics and parastatistics, or between different forms of parastatistics.

The above analysis can be used to shed light on the nature of ambistatistics in this

model. Consider an a1 vortex which is incident from the left on the symmetric two-vortex

state
(
|a3, a3〉− |−a3,−a3〉

)
, and eventually combines with it to make the total state |φ1〉.

If the a1 vortex then loops around one (say the leftmost) of the other vortices, then |φ1〉
will become |φ2〉. So if we now remove the a1 vortex as it came, the two a3 vortices will

be left in the anti-symmetric state
(
|−a3, a3〉− |a3,−a3〉

)
. More generally, in the quantum

mechanical scattering of an a1 vortex off of the above bosonic state, this path along with

many others will contribute. After the incident vortex has been scattered off to infinity,

we will be left with a nonzero probability that the two remaining indistinguishable vortices

are fermions. In this sense, ambistatistics violates the usual superselection rule between

bosons and fermions. We stress that here this behavior is a natural consequence of the

physics of nonabelian vortices, and has not been introduced in an ad hoc manner.
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We now turn to a model where the groupG = SU(3) is broken down to the six-element

group S3, the permutation group on three objects, which is generated by the matrices

t1 =

 0 1 0
1 0 0
0 0 −1

 , t2 =

−1 0 0
0 0 1
0 1 0

 . (5)

S3 has three conjugacy classes, given by {1}, {t1, t2, t1t2t1} and {t1t2, t2t1}. We start

with the state |t1, t2〉, which contains two indistinguishable vortices since the fluxes t1 and

t2 are conjugate. The total flux of the system is t1t2. We obtain a basis for a representation

of the braid group B2 by operating on this state with all powers of the vortex exchange

operator σ. This basis is
|t1, t2〉,

|t1t2t1, t1〉 = σ|t1, t2〉,

|t2, t1t2t1〉 = σ2|t1, t2〉.

(6)

Operating once more with σ brings us back to the original state. This three-dimensional

representation of B2 decomposes into a direct sum of three one-dimensional representa-

tions. This can be seen by transforming to the basis

|λ0〉 =
1√
3

(
|t1, t2〉+ |t1t2t1, t1〉+ |t2, t1t2t1〉

)
,

|λ1〉 =
1√
3

(
|t1, t2〉+ ω2|t1t2t1, t1〉+ ω|t2, t1t2t1〉

)
,

|λ2〉 =
1√
3

(
|t1, t2〉+ ω|t1t2t1, t1〉+ ω2|t2, t1t2t1〉

)
,

(7)

where ω = exp(2πi/3). Each of the above states carries a one-dimensional representation of

B2 given by σ|λm〉 = ωm|λm〉, m = 0, 1, 2. In the Hilbert space sector spanned by |λ0〉 the

two indistinguishable vortices are bosons. In the |λ1〉 and |λ2〉 sectors they obey fractional

statistics with statistical angles θ1 = 2π/3 and θ2 = 4π/3 respectively. Once again, this is

somewhat surprising since all of the fundamental fields in our theory are bosonic. If we add

one or more additional vortices from the t1 conjugacy class to the above system, we will

also obtain parastatistical sectors as well as their fractional generalizations (nonabelian

anyons).

To help us understand these results, it is useful to introduce the notion of Cheshire

charge. In a vortex system with total flux h, the only globally well-defined gauge trans-

formations are those belonging to the subgroup CH(h) ⊆ H consisting of all elements that
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commute with h. States of the system may carry a nontrivial representation of CH(h),

although this “Cheshire” charge is a global property of these states and is not carried by

any individual vortex [8][9]. Since the gauge transformations in CH(h) commute with ele-

ments of the appropriate braid group, we can choose states which simultaneously carry a

representation of both groups. For the states (7) in the S3 model, the globally well-defined

subgroup CS3(t1t2) is generated by t1t2 and is isomorphic to the cyclic group ZZ3. The

state |λ0〉 transforms trivially under this ZZ3, while |λ1〉 and |λ2〉 pick up the phases ω2

and ω respectively under a gauge transformation by t1t2. Thus, these anyonic states carry

a nontrivial ZZ3 charge. The existence of this charge can shed some light on the emergence

of fractional statistics in this example. Viewed from far away, these two-vortex systems

look like composites of a point vortex with flux t1t2 and a nontrivial ZZ3 charge. Rotating

this composite by 2π (counterclockwise) has the same effect as performing a t1t2 gauge

transformation. Thus the state |λ1〉 (for instance), which picks up the phase ω2 ≡ e2πiJ ,

has total angular momentum J = 2/3 + integer. The fractional part of J may be called

“Cheshire spin” since it is a direct consequence of the Cheshire charge in the composite

system and inherits similar nonlocal properties. From the point of view of the two original

indistinguishable vortices which are contained in this “charged flux tube”, there are three

contributions to J [7]. The first two are the individual spins of the constituent vortices

themselves. Since they are pure flux tubes, these contributions vanish. Finally, there is

a contribution from one vortex encircling the other counterclockwise. This must give the

entire spin of the system. However, this is the same as performing the double exchange

operation σ2 on |λ1〉. Thus, a single exchange of the two constituent vortices must yield

a phase ±eπiJ . Our earlier analysis shows that the plus sign is chosen. Note that the

constituent vortices are spinless particles obeying fractional statistics, that is, they violate

the usual spin-statistics relation.4 This result can be traced directly to the nonabelian

nature of the vortices and the corresponding nonlocal interactions between them.

Systems with Cheshire behavior may violate the superselection rule between states

with different statistical angles, as well as between states with different values of e2πiJ .

For example, consider the passage of a vortex of flux t1t2 between the two vortices in the

4 Cheshire charge is also responsible for the emergence of Fermi statistics in the Q8 model.

Moreover, for the states in (2) the globally well-defined subgroup CQ8(−a1) is generated by a1

and is isomorphic to the cyclic group ZZ4. The states |ψ〉 and |ξ〉 transform trivially under this

ZZ4, while |φ1〉 and |φ2〉 change sign under a gauge transformation by a1. Thus the ambistatistical

sector of the Hilbert space carries a nontrivial ZZ4 Cheshire charge.
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state |λ1〉. It is straightforward to show that in the resulting state we have σ = 1 (the two

constituent vortices are now bosons) and e2πiJ = 1 (the composite now has integral angular

momentum). The missing fractional spin is carried away as orbital angular momentum by

the incident vortex as it moves off to infinity. In general, the passage of a vortex with a

noncommuting flux from a distinct species can also change a nonabelian anyonic state into

a state with different statistical properties.

Throughout this paper we have considered systems in which the number of vortices is

constant, and we have neglected the creation of real vortex-antivortex pairs. It is reasonable

to ask whether such processes impose constraints on the allowed multi-vortex states, and

thereby possibly rule out certain types of exotic statistical behavior. Indeed, recent studies

have indicated that only Bose, Fermi and fractional statistics are allowed for identical

particles in the presence of pair creation, and furthermore that the usual spin-statistics

relation holds for such particles [10]. However this work assumes that the particles carry

no internal label. Hence it does not apply to parastatistical systems, for example, where

it is known that consistent relativistic quantum field theories can be formulated [5]. The

nonabelian vortex systems discussed here also avoid such restrictions, since two vortices of

the same species can have distinct fluxes. Thus we believe that our results concerning the

exotic statistics of vortices are not an artifact of our quantum mechanical approach.

We close with two brief comments. First, an analysis similar to that presented here

may be applied to systems with other symmetry breaking schemes G → H. While such

a treatment generally will be more cumbersome, the emergence of exotic statistics for

indistinguishable nonabelian vortices is generic. More precisely, an isolated system of in-

distinguishable vortices having noncommuting flux elements generally will possess anyonic

states (possibly even nonabelian anyonic states if there are more than two vortices). States

containing indistinguishable vortices in the presence of a spectator vortex with a noncom-

muting flux generally will violate the superselection rules between the above statistical

behaviors, as in ambistatistical systems. Which representations of the appropriate braid

groupBn1,...,nk are actually realized depends on the symmetry breaking scheme. Second, it

is interesting to note that nonfractional exotic behaviors such as ambistatistics and paras-

tatistics are in no way peculiar to 2 + 1 dimensions. Similar results hold for closed loops of

nonabelian cosmic string in the analogous (3+1)-dimensional spontaneously broken gauge

theories. Here, the analogue of bringing one vortex around another is threading one loop

of cosmic string through another loop.
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